Generalized Derivatives of Differential–Algebraic Equations
نویسندگان
چکیده
منابع مشابه
Generalized Derivatives of Differential-Algebraic Equations
Nonsmooth equation-solving and optimization algorithms which require local sensitivity information are extended to systems with nonsmooth parametric differential-algebraic equations embedded. Nonsmooth differential-algebraic equations refers here to semi-explicit differential-algebraic equations with algebraic equations satisfying local Lipschitz continuity and differential right-hand side func...
متن کاملAnalytical Treatment of Volterra Integro-Differential Equations of Fractional Derivatives
In this paper the solution of the Volterra integro-differential equations of fractional order is presented. The proposed method consists in constructing the functional series, sum of which determines the function giving the solution of considered problem. We derive conditions under which the solution series, constructed by the method is convergent. Some examples are presented to verify convergen...
متن کاملa system of generalized resolvent equations involving generalized pseudocontractive mapping
generalized resolvent equations; variational inclusions; algorithm; convergence; generalized pseudocontractive mapping
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Optimization Theory and Applications
سال: 2016
ISSN: 0022-3239,1573-2878
DOI: 10.1007/s10957-016-0988-9